
Modelling the Efficiency of Codon–tRNA Interactions Based
on Codon Usage Bias

RENANA Sabi1 and TAMIR Tuller1,2,*

Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel1 and The Sagol School of Neuroscience,
Tel-Aviv University, Tel-Aviv, Israel2

*To whom correspondence should be addressed. Tel. þ972-64058363. Fax. þ972-64058363.
Email: tamirtul@post.tau.ac.il

Edited by Prof. Hiroyuki Toh
(Received 10 January 2014; accepted 26 April 2014)

Abstract
The tRNA adaptation index (tAI) is a widely used measure of the efficiency by which a coding sequence is

recognized by the intra-cellular tRNA pool. This index includes among others weights that represent wobble
interactions between codons and tRNA molecules. Currently, these weights are based only on the gene
expression in Saccharomyces cerevisiae. However, the efficiencies of the different codon–tRNA interactions
are expected to vary among different organisms. In this study, we suggest a new approach for adjusting the tAI
weights to any target model organism without the need for gene expression measurements. Our method is
based on optimizing the correlation between the tAI and a measure of codon usage bias. Here, we show
that in non-fungal the new tAI weights predict protein abundance significantly better than the traditional
tAI weights. The unique tRNA–codon adaptation weights computed for 100 different organisms exhibit a
significant correlation with evolutionary distance. The reported results demonstrate the usefulness of the
new measure in future genomic studies.
Key words: codon usage bias; tRNA adaptation index; protein levels; wobble interactions; ribosome

1. Introduction

Allowed by the redundancy of the genetic code,
coding regions exhibit non-uniform usage of synonym-
ous codons. This deviation from uniform codon usage is
termed codon usage bias (CUB) and is related among
others to various aspects of gene translation (and
more generally gene expression) and its efficiency;1–10

specifically, it was suggested that it regulates transcrip-
tion and translation, but may also be related to recom-
bination rate. Indeed, it is known for over 30 years that
in mostorganismsthe degree ofCUB of genescorrelates
with their expression levels.11–14

Various approaches for quantifying the CUB of a gene
have been suggested in the last decades: the effective
number of codons, for instance, measures deviations
from equal usage of synonymous codons,13 while other
indices such as the frequency of optimal codons,15 the
codon bias index,11 and the codon adaptation index

(CAI)16 define a subset of ‘optimal’ codons and measure
the frequency of these codons in the coding region of
the gene.

The CUB indices have been employed in hundreds of
previous studies. For example, it is known that in many
organisms (e.g. Escherichia coli) the CAI exhibits a very
high correlation with protein levels (similar to the one
obtained between mRNA levels and protein levels17);
thus, CAI has been frequently used as a proxy of expres-
sion levels (see, for example,18–20). In addition, it has
been employed in a vast number of key studies in the
recent years.18,19,21,22

One disadvantage of measures that are based on a set
of reference genes11,16,23 is the fact that in the case of
organisms with poor genomic data and without large
scale cellular measurements, creating a meaningful
reference set is challenging. Another disadvantage of
these measures is the fact that they cannot separate
between the various possible causes of CUB in highly
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expressed genes: some of them may be related directly
to the translation process (e.g. co-evolution and/or
adaptation to the tRNA pool8,24,25) and others may
not be related to translation (e.g. GC content and
folding9,26–28).

In 2004, dos Reis et al.8 proposed the tRNA adapta-
tion index (tAI), which aims to estimate only the adap-
tation of codons/genes to some aspects directly related
to the elongation step occurs in the ribosome via the
adaptation to the tRNA pool, wobble interactions, and
properties of the ribosome. Specifically, the tAI consid-
ers the fact that different tRNA species can recognize
a codon with different affinities.2,8,29 Thus, the tAI is
different than CUB-based measurements mentioned
above and provides important information related to
translation that is not necessarily covered by CUB mea-
sures.

Indeed, measures of the adaptation of genes to the
tRNA pool (such as the tAI) have extensively been used
in the recent years for studying questions in diverse
biomedical disciplines such as evolutionary biology,
functional genomics, and systems biology (see, for
example,3,30–35).

Let ni be the numberof tRNA isoacceptors that recog-
nize the ith codon, the absolute adaptiveness value of
the ith codon is defined in the following equation:

Wi ¼
Xni

j¼1

ð1� SijÞ � tGCNij ð1Þ

where tGCNij is the gene copy number of the jth tRNA
that recognizes the ith codon (a proxy of the tRNA
levels24,29,36), and Sij is a selective constraint on the ef-
ficiency of the interaction between the ith codon and
the jth tRNA, which is scored between 0 (perfect in-
teraction) and 1 (no interaction);8 specifically, the Sij

weights can be related to aspects of translation elong-
ation (tRNA, wobble interactions, and properties of
the ribosome), as these aspects are expected to affect
the efficiency of the codon–anticodon interaction. Wi

values are calculated according to Crick’s wobble rules
forcodon–anticodonpairing (Table 1). Thecodonrela-
tive adaptiveness value wi is obtained by dividing each
Wi with the maximum Wi value over all codons.8 The
tAI of a gene is defined as the geometric mean of the
wi values of its codons.

In1966,Crick37 suggestedthat in somecaseswobble
pairing may occur in the third base of the codon.
According to Crick, the pairing at the third codon pos-
ition has to obey chemical constrains; thus, some of
the optional parings will not occur. Forexample, the un-
likely pairing of guanine–adenine is due to a side group
of guanine, which cannot make one of its bonds. In add-
ition to the four standard nucleotides,modified nucleo-
sidesoftenoccupy thewobblepositionof theanticodon
(usually position 34 of the tRNA). In fact, the wobble
position is the most frequently modified nucleoside in
tRNA.38,39 Inosine, for example, is a common modifica-
tion of adenine that occurs in the wobble position of
many tRNA species.39–43

Out of the eight Sij weights, fourare related to Watson–
Crick (WC) interactions and the others are related to
wobble interactions. In prokaryotic genomes, tRNAIIe

has a unique wobble position nucleoside [lysidine (L)
in bacteria and agmatidine (agm) in archaea], which
recognizes the AUA codon;44 thus, the prokaryotic Sij

set contains one additional wobble Sij weight. The dif-
ferent possible pairs at the wobble position and the
current tAI weights of the corresponding interactions
are summarized in Table 2.

In the tAI, WC Sij weights are fixed to zero (perfect
interactions) under the assumption of no constraint
on these interactions. The wobble interaction weights

Table 1. Crick’s wobble rules for calculating Wi

Codon third position Anticodon first position Wi

i U j I ð1� sU:IÞtGCNi;j þ ð1� sU:GÞtGCNi;jþ1

i þ 1 C j þ 1 G ð1� sC:GÞtGCNiþ1;jþ1 þ ð1� sC:IÞtGCNiþ1;j

i þ 2 A j þ 2 U ð1� sA:UÞtGCNiþ2;jþ2 þ ð1� sA:IÞtGCNiþ2;j

i þ 3 G j þ 3 C ð1� sG:CÞtGCNiþ3;j þ ð1� sG:UÞtGCNiþ2;jþ2

The Wi values are calculated based on Equation (1). The 64 codons are clustered in the genetic code into 16 groups, each one
consists of four codons. The fourcodons in each group differ only in their third position (the wobble position). The formulas for
calculating the Wi values for each of the four codons in the group are given in the table. i denotes the index of the codon in the
quartet which ends with U, i þ 1, i þ 2, and i þ 3 denote the three other codons which end with bases C, A, and G, respectively.
j denotes the index of the tRNA whose anticodon starts with I; all base pairing between the ith codon and the jth anticodon are
WC. j þ 1, j þ 2, and j þ 3 denote the three other tRNAs whose anticodons start with bases G, U, and C, respectively. tGCNij

represents the tRNA gene copy number corresponding to the interaction between the ith codon and the jth tRNA. For each
codon, Wi sums over all tRNAs that can pair with the codon. For example, the GCU codon which ends with U can either pair
with anticodons that start with I (IGC) and generate a standard WC base pairing, or pair with anticodons that start with G
(GGC) and generate a wobble base pairing.
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are inferred by optimizing the correlation between
gene expression levels (mRNA levels) and their corre-
sponding tAI in Saccharomyces cerevisiae;8,46 the ration-
ale behind this optimization is based on the following
relations (which hold in many organisms): (i) there is
correlation between mRNA levels and protein levels;
(ii) there is correlation between translation rate and
protein levels; and (iii) highly translated genes are
under selection to include codons with higher adapta-
tion to the tRNA pool.

The possibility of having different wobble interaction
weightsacrossdifferentgenomeshasnotyetbeencom-
prehensively studied. Here, we develop a novel generic
approach for species-specific estimation of the tAI Sij

weights without the need of gene expression measure-
ments; for convenience, we name the new measure:
species-specific tAI (stAI). This measure includes differ-
ent Sij weights for each organism. We show that the
correlation between protein levels and stAI is higher
than that between protein levels and tAI.

Based on our approach, we infer the wobble Sij

weights for a wide variety of organisms from the three
domains of life, in order to examine the conjecture
that organisms from different domains have signifi-
cantly different Sij weights and to understand these
differences.

2. Materials and methods

2.1. Computing the Sij weights of the stAI without
the need of gene expression measurements

The tAI weights are based on optimizing the correl-
ation between tAI (Equation 1) and expression levels
in S. cerevisiae and E. coli.8 However, large scale meas-
urement of mRNA levels and specifically protein

abundance (PA) are not available for most of the organ-
isms with sequenced genomes.

To solve this problem we develop an approach that is
based on the assumption that highly expressed genes
should have both higher adaptation to the tRNA pool
(i.e. higher tAI) and higher CUB (i.e. less uniform distri-
bution of codons).8 Thus, there should be a significant
correlationbetweenCUB andtAI. Basedonthisassump-
tion, we find the Sij-values that optimize the correlation
between CUB and stAI. Note that the optimized correl-
ation is at the level of genes while for each gene both
measures are based on its codons content. Below we
provideadditionaldetails aboutourapproach including
the CUB measure that we use.

2.2. Relative codon bias
In order to infer the Sij weights without the need of

expression levels, we used a measure of CUB, which is
based solely on the coding sequence. The strength of
relative codon bias (RCBS) proposed by Roymondal
et al.47 is an example of an index that is based only on
the sequence. The RCBS of codon xyz is expressed as:

dxyz ¼
fðx; y; zÞ � f1ðxÞ � f2ðyÞ � f3ðzÞ

f1ðxÞ � f2ðyÞ � f3ðzÞ
ð2Þ

where f(x, y, z) is the observed frequency of codon
xyz (where x, y, z denote the first/second/third nucleo-
tides, respectively, of the codon) and f1(x), f2(y),
and f3(z) are the observed frequencies of bases x, y,
and z at, respectively, positions 1, 2, and 3 of the
codon. These frequencies are computed for each
gene separately. The RCBS of a gene of length L, in
codons, is calculated as:

RCBS ¼
YL

i¼1

ð1þ di
xyzÞ

 !1=L

� 1 ð3Þ

RCBS takes into account base compositional bias, to
get a more reliable measure of highly favoured codon
frequency while controlling for other features of the
coding sequence such as GC content bias.

According to Equation (2), rare codons will be given
lower dxyz (i.e. a value close to 21) while avery frequent
codon will be given a higher dxyz value (e.g. it can be 1).
Thus, very rare codons decrease the final RCBS score
of the gene and very frequent ones increase its final
RCBS score (see Equation 3). However, we believe that
(almost by definition) genes with very high CUB should
include both very frequent codons and very rare codons.
For example, if a hypothetical amino acid A has two
codons, one is ‘optimal’, and the second is ‘not optimal’,
we expect a very highly expressed codon usage biased
gene to have a very high dxyz score for the first one and a
very low dxyz score for the second one. But, we wish that

Table 2. The different base-pairings

j i

I G U C A L

I — — 0 0.28 0.9999 —

G — — 0.41 0 — —

U — 0.68 — — 0 —

C — 0 — — — —

A — — — — — —

L — — — — 0.89 —

Sij-values are given to the pairing between the first position of
the jth anticodon (tRNA) and the third position of the ith
codon. Sij-values of WC base pairs are shown in italics,
wobble values are shown in bold. Interactions which are not
included in the calculation of the tAI are marked with
hyphens. Lysidine (L) is a bacterial RNA modification of the
DNA nucleotide cytidine (c).44,45
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both cases/codons will contribute to the same direction
and increase the RCBS score.

Thus, we employ a modified version of the RCBS,
which we term here directional codon bias score (DCBS),
as in this measure, both positive and negative codon
usage biases contribute (in the same direction) to
the total CUB of the gene. We define the directional
codon bias (DCB) of a codon triplet xyz as:

dxyz ¼ max
fðx; y; zÞ

f1ðxÞ � f2ðyÞ � f3ðzÞ
;

f1ðxÞ � f2ðyÞ � f3ðzÞ
fðx; y; zÞ

� �
ð4Þ

The DCBS of a gene of length L, in codons, is the follow-
ing mean (see example in Supplementary data):

DCBS ¼
PL

i¼1 dxyz

L
ð5Þ

As we later demonstrate, in our framework the DCBS
gives better results than the RCBS.

Finally, it is important to emphasize the fact that both
RCBS and DCBS control for mutation bias. Specifically,
when we compute the DCBS (see above), the frequency
of each codon [fðx; y; zÞ] is normalized by the expected
frequency under the assumption that the different
nucleotides are independent [ f1ðxÞ � f2ðyÞ � f3ðzÞ]; the
later represents among others the mutation bias. The
measure that we use is based on the frequency of
the codon normalized by the expected frequency
according to the mutation bias, and thus control for
mutational bias (see also Supplementary data regard-
ing the way our approach controls for possible factors
affecting CUB).

2.3. Inferring the parameters of the stAI
The stAI inferred here is based on the same equations

of the tAI with an organism-specific Sij-values’ set
(Equation 1), which is based on a measure of CUB.
For every genome used in this study, the unique Sij

set was inferred by optimizing the non-parametric
(Spearman) correlation between DCBS (Equations
4 and 5) and stAI (Equation 1). To avoid convergence
to local maxima point, we used various starting points.
Specifically, we included in the set of starting points
the original weights of the tAI8 and also the two
extreme values of these weights (all zeros and all ones).
In order to choose a set of starting points, we halved
the allowed region of the Sij values (i.e. the region: Sij

between 0 and 0.5, and the region: Sij between 0.5
and 1) and considered all combinations for sampling
values from these two regions (24 possibilities for
the four eukaryotic wobble Sij and 25 for the five pro-
karyotic wobble Sij); thus, organisms from the same
domain shared the same set of starting points. For
each specific starting point, we used a hill climbing

search method to iteratively optimize the Sij weights
using a variable step size (starting with an initial
step size of 0.3 and finishing with step size of 0.001).
At each step size, when a new optimum was not found,
the step size was decreased by a factor of 1.35. Iteration
of the hill climbing included a random choice of Sij ele-
ments to change and a direction (i.e. increasing and
decreasing) that increases the correlation between
stAI and DCBS. The final chosen set of Sij was the one
exhibited the maximum correlation between the stAI
and DCBS. In order to determine whether the chosen
set of starting points constituted a sufficient sample of
the search space for the algorithm convergence, we
added 100 more random starting points. The addition-
al points provided no significant change in the final cor-
relation between stAI and DCBS.

2.4. Comparison of the hill climbing method
to Nedler–Mead search method

The Nedler–Mead (NM) optimization48 is the search
method used to infer the Sij-values of the original tAI.8

When considering similar set of initiation points, our
heuristic search outperformed the NM in finding the
maxima of the objective function (i.e. the correlation
between stAI and DCBS) in six of the eight model organ-
isms (and was quite similar in the other two). We do not
claim that hill climbing is better than NM; however, in
the case of the specific problem analysed here (where
the hill climbing explores the search space very well),
and when considering the Matlab implementation of
NM, the hill climbing was a bit better.

2.5. The analysed organisms
Our analysis included 100 different organisms

(archaea, bacteria, and eukarya), in which CUB was cor-
relatedwith theamountofadaptationto thetRNA pool.
The correlation between stAI and DCBS/RCBS deter-
mined whether or not a tested genome would partici-
pate in the analysis. We excluded organisms in which
an insignificant positive correlation or a significant
negative correlation was observed; in such organisms,
the assumptions that connect stAI to CUB do not hold
and thus our method cannot be implemented. A
detailed list of the excluded organisms is provided in
Supplementary Table S1.

2.6. Generating randomized genes sequences
Random sequences were generated according to the

real genomic codon distribution. For each of the 100
genomes studied in this work, 20 randomizations
were performed by randomly drawing codons from
the calculated genomic distribution and maintaining
the protein content of the original genome.
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2.7. Genomic sequences
In addition to the model organisms, which were

chosen due to their available proteins measurements,
we selected the genomes according to the list from
ref.49, while trying to build relatively balanced group
size wise (thus since bacteria was significantly larger
than other groups in the list, we only included organ-
isms of the three major phylums provided there:
Cyanobacteria, Alphprobacteria, Gamma-probacteria).

Coding sequences of all 100 species were retrieved
from the NCBI (ftp://ftp.ncbi.nih.gov/genomes/). Genomic
tRNA copy numbers of all species except Aspergillus
nidulans, Debaryomyces hanasenii, and Candida albicans
were obtained from the Genomic tRNA Database
(http://gtrnadb.ucsc.edu/). For A. nidulans, D. hanase-
nii, and C. albicans, we used the tRNA copy number as
reported in ref.30. A detailed list of all organisms ana-
lysed here is provided in Supplementary Table S2.

2.8. Protein abundance
Large scaleproteinabundance(PA)measurementsof

S. cerevisiae, E. coli, Arabidopsis thaliana, Shigella dysen-
tariae, Caenorhabditis elegans, Drosophila melanogaster,
and Leptospira interrogans were retrieved from paxdB
(http://pax-db.org/#!home). For S. cerevisiae, E. coli,
S. dysentariae, and L. interrogans, a few datasets were
provided. In this case, a weighted average between the
different PAvalues was taken (i.e. we averaged the data-
sets after normalizing each of them such that they have
identical average). Schizosaccharomyces pombe expres-
sion levels were obtained from ref.50. The protein
levels of some of the multiple cellular organisms were
based on analysisof multiple tissues (A. thaliana,D.mel-
anogaster, and C. elegans) (see details in http://pax-
db.org/#!home). Specifically, we analysed all protein
levels data that were available in paxdB (http://pax-
db.org/#!home) on 2012. Note that in mammals it
has been shown that the tRNA levels in various tissues
tend to be correlative (the ranking of the tRNA genes
abundance remains similar while the average value
might change51); this is probably the case in many
other organisms.

2.9. Permutation test for comparing two Sij means
An empirical P-value was computed to test the null

hypothesis that the means of two Sij distributions do
not significantly differ between two groups of organ-
isms; let n and m denote the number of organisms in
the two groups, respectively. For each Sij component
of theweights vector, weperformedthe following steps:
first, we defined the normalized distance between the
Sij means in the twogroupsoforganisms astheabsolute
difference between the means divided by the sum
of the two corresponding standard deviations (SDs).

Secondly, we permute the Sij elements of the two groups
by randomly drawing n values as the first group and
m (non-overlapping) values as the second group.
The random permutations were performed 100 times,
eachtimethedistancebetweenthe tworandomgroups
was computed. Finally, the P-value was defined as
the number of times the random distance was higher
or equal to the original distance divided by 100.

2.10. Spearman correlation as a measure to guide
the optimization

The main advantage of this measure is the fact that it
is a non-parametric measure that captures any mono-
tonic relationship between CUB and stAI. Since this
measure has been successfully employed in many
papers in the field in this context,18,52,53 we decided
to use it also here.

2.11. The general rational related to evaluating the stAI
and demonstrating that stAI outperforms tAI

In this section, we would like to explain and empha-
size the rational related to the analyses reported in this
study. First, as mentioned in the section Introduction,
CUB measurements such as the CAI quantify different
gene expression aspects than the tAI. Here, we aim at
improving the tAI (and not the CUB indices such as
the CAI) and thus, our major baseline for stAI evalua-
tions is the tAI (and not the CUB indices such as the
CAI). Secondly, we use the correlations with PA as an in-
direct way to evaluate the stAI: we expect that genes
with higher translation efficiency will have higher PA;
we also expect that a better measure related to the
adaptation to the tRNA poolwill havehighercorrelation
with translation efficiency; thus, we expect that a better
measure related to the adaptation to the tRNA pool
will have higher correlation with PA. It is clear that
there can be CUB-based measurements with higher
correlation with PA than stAI (see, for example,54)—
however, as mentioned, the aim of this study is not to
infer PA predictor but to improve the inference of the
tAI parameters.

3. Results

3.1. The correlation between the CUB and tRNA pool
varies among different organisms

A correlation between CUB and stAI is expected;
however, the strength of this correlation among differ-
ent organisms can teach us about the evolutionary
forces shaping their genomes.

The correlations between stAI and DCBS obtained
in the algorithm vary from a lowest value of 0.1136
(for the archaea Halomicrobium mukohataei) to a
highest correlation of 0.7626 (for the fungi Yarrowia
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lipolitica). The bottom 10% correlations were obtained
in prokaryotic genomes (the four archaea: H. mukoha-
taei, Archaeoglobus fulgidus, Pyrobaculum aerophilum,
and Metallosphaera sedula; and the six bacteria:
Anabaena variabilis, Brucella suis, Gloeobacter violaceus,
Prochlorococcus marinus MIT9313, Synechococcus elon-
gates, and Trichodesmium erythraeum); thus, in this
organisms, selection for CUB is presumably either
weak or/and not strongly related to translation elong-
ation and the tRNA pool.

The top 10% of the correlations were obtained
mainly in eukaryotic genomes (the eight fungi: C. albi-
cans, C. glabrata, Eremothecium gossypii, Saccharomyces
bayanus, S. mikatae, S. paradoxus, Cryptococcus neofor-
mans, and Y. lipolitica; and the two bacteria: E. coli and
Pasteurella multocida); in these organisms, the selection
for CUB is probably strongly related to the tRNA pool
and translation elongations. All correlations are
reported in Supplementary Table S3.

3.2. The stAI exhibits better PA predictions than the
tAI in non-fungal organisms

ThecorrelationsbetweenstAI andPA arepresented in
Fig. 1. All eight models showed significant correlations.
In six of the eight organisms, the correlation between
stAI and PA was higher than that between tAI and PA.
This result (Table 3) indicates that stAI outperforms
the current tAI as a predictor of PA in all non-fungal
organisms. For the two fungi used here (S. cerevisiae
and S. pombe), the original tAI predicted PA better
than the stAI. This result is not surprising since the Sij-

values in the tAI were inferred based on the optimiza-
tion of the correlation between tAI and S. cerevisiae
mRNA expression levels8 (which strongly correlates
with PA in S. cerevisiae; Spearman correlation of 0.74,
P , 0.000155); on the other hand, stAI is based on
CUB, which is a less accurate measure of protein levels.
However, for most of the sequenced genomes exist to
date, expression levels are not available; thus, the stAI
is valuable.

We emphasize that although previous studies
reported a significant positive correlation between
CUB and expression levels in the model organisms
studied here,12,23,56,57 it is not trivial that Sij optimiza-
tion based on CUB improves the correlation with
protein levels. Specifically, CUB is correlated with
protein levels, but mRNA levels and protein levels in dif-
ferent organisms are also usually correlated;52,58,59

thus it is not clear that Sij optimized based on the CUB
of the organism necessarily have higher correlation
with protein levels than the Sij optimized based on
mRNA levels of S. cerevisiae.

3.3. Robustness analysis demonstrates that in non-
fungal organisms the stAI outperforms the tAI
in terms of the correlation with PA

In order to empirically estimate the organism-specif-
ic probability that stAI (which is based on DCBS)
improves the correlation with PA, a jack-knifing
approach was implemented. One round of it involved
the implementation of the algorithm for calculating
the stAI on a sample of random subset of 50% of the

Figure 1. Dot plots of log(PA) vs. stAI and the corresponding Spearman rank correlations between stAI and PA. The correlations (and P-values)
are calculated for the eight model organisms with PA measurements which include three bacteria (A–C), three non-fungal eukaryotes
(D–F), and two fungi (G–H).
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proteins. Finally, the correlation between stAI and PA
was computed for the sample and was compared with
thecorrelationofPAwith tworelated indices: theorigin-
al tAI and stAI that is based on RCBS (i.e. its Sij were in-
ferred from RCBS and not from DCBS). This procedure
was repeated 100 times where each time the index
exhibited the highest correlation with PA was counted
(Fig. 2).

As can be seen, the results demonstrate again that for
non-fungal organisms, the species-specific inference of
the Sij tends to predict PA better than the traditional tAI.
The 100 Sij sets, their corresponding correlations
between stAI and DCBS and the full taxonomy for each
organism, are provided in Supplementary Table S3.

3.4. Sij inferred based on CUB are similar to the Sij

inferred based on PA
In order to check whether the Sij that are inferred

based on CUB (i.e. based on the DCBS) converge to

similar values as those which are based on expression
levels, we computed Sij sets by optimizing the correl-
ation between stAI and PA for the model organisms
with available PA measurements. This approach of
using expression levels to optimize the tAI was
employed in the study of ref.8. The Spearman rank cor-
relation between the concatenated vectors of Sij-values
(35 points) inferred based on the DCBS and the one in-
ferred based on PA is 0.6902 (P-value ,1025; permu-
tation P-value ,0.001; 35 points). The Euclidean
distance between the two vectors is also significantly
lower than the one obtained by random permutation
of the two vectors; specifically, when we performed
1000 permutations of these values, all of them had
higher Euclidean distance (P-value ,0.001). The Sij-
values that were obtained via correlation with DCBS
and the ones obtained via correlation with PA are
provided in Supplementary Table S4.

3.5. Considering all tRNA–codon pairing possibilities
do not improve the performances of the stAI

There are possible cases of non-standard base pairing
that currently are not included in the tAI wobble rules
(U–U binding for instance). It is interesting to check
whether introducing such additional rules to the
model can improve its performances. Using Equation
(1), we included in the set of Sij all missing pairing
options (U:U, C:U, U:C, C:C, C:A, G:A, I:G, and G:G). An
initial weight of 0.5 was given to all non-WC Sij (WC Sij

are fixed to zero). Nevertheless, considering all possible
pairings in the stAI weights calculation did not improve
the correlation of the stAI with DCBS or with PA. The ori-
ginal approach (i.e. WC and wobble only) reached
higher maxima values for seven of the eight models. In
addition, for five of the eight models, bettercorrelations
with PA, were obtained for the original stAI.

Table 3. Spearman rank correlation of the original tAI and the stAI with PA

Number of genes Number of proteins r (tAI, PA) r (stAI, PA) Change (%)

Non-fungal

E. coli 4145 688 0.5032 0.5493 þ8.39

S. dysentariae 4501 1266 0.3574 0.36757 þ2.76

L. interrogans 3667 2114 0.0959 0.19408 þ50.58

A. thaliana 28,163 8478 0.3328 0.3762 þ11.53

C. elegans 22,830 6959 0.0919 0.0956 þ3.87

D. melanogaster 10,926 6510 0.4878 0.5001 þ2.46

Fungi

S. cerevisiae 5869 2666 0.6915 0.5802 219.18

S. pombe 5017 1464 0.6554 0.56715 215.58

The correlations between tAI and PA vs. the correlations between stAI and PA in eight model organisms with available PA data.
The third column refers to the number of genes with available PA measurements in each organism.

Figure 2. Comparison between stAI and the tAI. The middle bars
representing the number of times (based on the jack-knifing
analysis) the stAI outperformed the other versions of the tAI; as
can be seen, stAI outperforms tAI in all non-fungal organisms.
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3.6. Adding constraint on WC interactions do not
improve the performances of the stAI

The first four Sij weights, which represent the con-
straint on WC interactions, are fixed to zero. Assuming
that these interactions might not be perfect and thus
allowing them to change during the optimization did
not provide further improvement. The starting point
for each model was the one exhibited the maximum
correlation between stAI and DCBS in the original
search. The original search, in which WC Sij are fixed to
zero, reached higher maxima values for five of the
eight models; in addition, in five of the eight models,
the original search exhibited a better correlations with
PA than the new search.

3.7. Distances between the inferred Sij-values correlate
with evolutionary proximity

In the next step, we aimed at understanding if the
organism-specific Sij-values reflect evolutionary prox-
imity and if they are biologically meaningful. To this
end, the inferred Sij-value sets of the 100 organisms
were clustered into three groups using the k-means
algorithm.60 We compared the clustering result to the
clusters obtained by partitioning the organisms to the
three domains of life. The clustering correctly classified
77% of the 26 eukarya, 45% of the 38 bacteria, and
67% of the 36 archaea (Fig. 3). In general, 61% of the
total 100 organisms were classified into the correct
domain.

Properly randomized genomes that were generated
by maintaining the CUB of the genome and its protein
content were used to empirically test the significance
of this clustering (see section 2). None of the 20 ran-
domizations outperformed the original clustering
(with respect to total correct classifications, empirical
P-value ,0.05). This result demonstrates that with
high probability the reported clustering cannot be
obtained randomly even when considering randomized

genomes with similar features to the original ones
(global CUB and the same proteome), supporting the
conjecture that the obtained Sij-value similarities cor-
relate with the evolutionary distances and thus have
biological meaning.

Finally, it is important to mention that there is co-
evolution between CUB and tRNA levels (see, for
example,24,34,61,62). Specifically, based on various the-
ories, the CUB should co-evolve with the tRNA pool
and the tRNA–codon interaction efficiencies to opti-
mize the organism fitness; thus, CUB, tRNA levels, and
tRNA–codon interactions cannot be separated.

3.8. Similarities among the inferred Sij-values
of the analysed organisms

The mean efficiency of the different inferred codon–
anticodon interactions over all the analysed organisms
are summarized in Table 4. The results emphasize the
similarities among the different organisms and
domains.

As mentioned, Sij-values are between 0 and 1. Since
these values represent a constraint on the codon–
anticodon interactions, interactions with lower values
are considered more efficient. For example, it can be
seen from Table 4 that the inosine–cytosine inter-
action has the lowest mean value (sI:C ¼ 0.42), while

Figure3. Principal componentanalysis (PCA)onthe100different Sij sets demonstrates clusteringof Sij according to evolutionarydomains. The
first three components of the PCA are presented. Each point in the figure represents one of the 100 analysed organisms; the shape of the
point corresponds to the domain of the organism at the tree of life and the colour corresponds to the cluster the point was classified
based on the k-means algorithm.

Table 4. The mean inferred wobble Sij-values

SG:U SI:C SI:A SU:G SL/agm:A

Eukarya 0.7861 0.4659 0.9075 0.6295 —

Bacteria 0.6294 0.4211 0.8773 0.698 0.7309

Archaea 0.3898 0.3774 0.5015 0.4363 0.6453

Mean 0.6 0.42 0.76 0.588 0.6881

The mean inferred wobble Sij-values strength foreach domain
of life and for the entire analysed dataset (last row).
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Figure 4. Sij distributions among different domains of life. Each figure contains three histograms representing the Sij in the different domains of
life; themean and SD of the Sij-values in each domain are also reported. The P-values corresponding to thecomparison betweenevery two Sij

means appear in the bottom of the figure (see section 2 sub-section ‘Permutation test for comparing two Sij means’).
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Figure 4. Continued
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the wobble inosine–adenosine has the largest mean
value (sI:A ¼ 0.76). This suggests a good I:C interaction
and an inefficient I:A interaction. These findings are
supported by Murphy and Ramakrishnan.63 where it
is stated that the decoding of adenosine-ending
codons by inosine is inefficient. It is also mentioned
that the inosine–cytosine interaction is very similar
to the canonical G:C pair.

SL:A and Sagm:A have a similar distribution, and the
corresponding P-value proves that the mean values
are not significantly different (see Fig. 4E). Since agma-
tidine is in many ways similar to lysidine (see ref.64), it
makes sense that their Sij-values are similar.

3.9. Differences among the inferred Sij-values
of different groups of organisms

To test the hypothesis that the Sij-values of different
organisms groups (i.e. different domains or different
phylums within the same domain) have significantly
different means, we computed an empirical permuta-
tion P-value (see section 2). The Sij distributions and
their corresponding P-values are presented in Fig. 4.

As canbeseen, the sI:C distribution is similarbetween
the three domains (Fig. 4B); however, sU:G, sI:A, and
sG:U tend to be significantly different among the
three domains. An empirical P-value was used also for
the comparison between the two major phylums
within each domain. The only significant difference

was obtained for the sI:A distribution of eukarya sub-
groups Opisthokonta vs. Viridiplantae and bacteria sub-
groups Proteobacteria vs. Cyanobacteria (see Fig. 5). All
other insignificant Sij distributions among different
phylums appear in Supplementary Fig. S5.

4. Discussion

In this study, we describe a newapproach for inferring
the efficiency of wobble interactions in the tAI without
prior knowledge about the expression levels of the ana-
lysed organism. The approach is based on the fact that
in most organisms highly expressed genes have higher
CUB which is, at least partially, due to selection for
improved adaptation of the codons to the tRNA pool
of the organism. With our approach we infer the effi-
ciency of wobble interactions via optimizing the com-
ponent of the CUB that is due to adaptation to the
tRNA pool (i.e. the correlation between these two mea-
sures: CUB and adaptation to the tRNA pool).

Thus, one limitation of ourapproach (and other CUB-
based approaches) is the fact that it will not work in the
case of organisms with no strong enough selection for
both CUB and the adaptation to the tRNA pool in
highly expressed genes; specifically, we assume that
the evolutionary selection for this two phenomena
tend to be stronger when the gene expression is higher.

In addition, we show that with our approach we are
able to infer the efficiency of wobble interactions in
non-fungal organisms better than the conventional
approach (the tAI that does not optimize these values
for each organism separately). In addition, we provide
the estimations of these values for 100 organisms and
show that they vary among different organism and cor-
relate with evolutionary proximity. We report the simi-
larities and differences among the inferred efficiencies
of the analysed organisms.

PA measurements rather than mRNA level measure-
ments are more appropriate for estimating the extent
towhich acoding sequence feature is related to transla-
tion efficiency. Thus, the improved correlation between
stAI and PA exhibited for the non-fungal model organ-
isms relatively to the correlation between tAI and PA
demonstrates the advantages of our novel approach.
Specifically, the improved correlation between stAI
and PA indicates a strong association between trans-
lation efficiency (and thus PA), and the combined
information the stAI provides which includes the co-
adaptation of CUB to the tRNA pool, and the efficiency
of the different wobble interactions.

Currently, there are less than a few dozen large
scale measurements of protein levels, while there are
.25,000 sequenced genomes. In addition, in the case
of most of the organisms on earth, it is much easier to
sequence their genomes, while it is usually impossible

Figure 4. Continued
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to culture them in order to measure their protein
levels (see, for example,65). Our approach can improve
the study of translation and evolution in such organ-
isms, even if there are no available gene expression
measurements.

The idea of different domains having different
wobble Sij-values is supportive with the successful
significant clustering reported in this study. The differ-
ences between the bacterial and eukaryotic ribo-
somes66,67 might provide a plausible explanation to
this result as specific physical, chemical, and geometric-
al constraints are imposed on each tRNA–codon inter-
action. In the budding yeast, for example, the wobble
inosine tRNA modification is essential for viability.40

This result is in line with a recent study68 that two
kingdom-specific tRNA modifications are major contri-
butors that separate archaeal, bacterial, and eukaryal
genomes in terms of their tRNA gene composition.
Specifically, with our approach, we were able to
provide information about the interaction efficiencies
that tend to vary among the different domains (sU:G,
sI:A, and sG:U) and within some of the domains (sI:A);
in addition, we show that the efficiencies of some of
the interactions are conserved in all the domains
(sI:C). Combining this information with additional
information such as phylogenetic analysis, three

dimensional conformations of the ribosome and tRNA
molecules and knowledge related to tRNA modifica-
tions can provide a better understanding of the exact
structure of the ribosome and tRNA molecules, their
biochemical interactions, and their evolution.

We further verified that modelling non-conventional
interactions between nucleotides does not significantly
improveourmodel. Thus, ouranalysis supportsthe con-
jecture that, in the analysed organisms, wobble/WC
interactions/parameters that appear in the original
tAI measure should not be updated.

Finally, there has been a debate about the causality of
the tRNA adaptation/protein level relations. Some pre-
vious studies suggested that increasing the adaptation
to the tRNA pool has direct effect on translation rate
and thus on protein levels.34,69 However, other studies
have suggested that this relation is not causal: endogen-
ous highly expressed genes have higher adaptation to
the tRNA pool via reasons that are not directly related
to the translation rate.62,70 For example, it has been
suggested that the adaption of highly expressed
genes to the tRNA pool improves the global ribosomal
allocation among genes based on the fact that genes
with higher adaptation to the tRNA pool consume
less ribosomes;9,70,71 it was also suggested that evolu-
tion maintains a balance between codon frequency

Figure 5. sI:A distribution within the major phylums of the eukaryotic and bacterial domains with a significant empirical P-value (see
details in section 2).
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and the cellular levels of the tRNA genes such that the
actual translation elongation speed is constant;62

highly expressed genes have higher adaptation to the
tRNA pool since the effect of these genes on maintain-
ing this balance is higher than in the case of lowly
expressed genes.62 It is important to mention that
the success of our approach is robust to the outcome
of this debate. The fact that highly expressed genes
have higher adaptation to the tRNA pool as reflected
by the wobble interactions and the cellular tRNA
levels is enough for the success of our approach, the
exact biophysical/evolutionary mechanism does not
matter.
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